¹H and ¹³C Chemical Shifts of some Tetracyclic Acridinone Derivatives

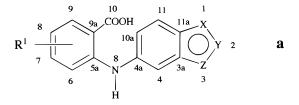
S. MOREL, J. P. GALY* and R. FAURE URA CNRS 1411 (case 552), Faculté des Sciences et Techniques de Saint-Jérôme, Avenue Escadrille Normandie-Niemen, 13397-Marseille, Cédex 20, France

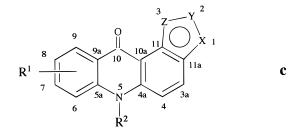
The ¹H and ¹³C NMR resonances of 19 tetracyclic acridinone derivatives were completely and unambiguously assigned by a combination of ¹H-detected one-bond HMQC and long-range (two and three bonds) HMBC correlation experiments. ¹H and ¹³C chemical shifts are also reported for the respective *N*-aryl benzoheterocyclic precursors. © 1997 by John Wiley & Sons, Ltd.

Magn. Reson. Chem. 35, 556–560 (1997) No. of Figures: 1 No. of Tables: 7 No. of References: 13 KEY WORDS NMR; ¹H NMR; ¹³C NMR; acridinones; tetracycles

Received 8 January 1997; revised 29 March 1997; accepted 7 April 1997

INTRODUCTION


The use of acridine derivatives as therapeutic agents has been the subject of numerous studies.¹ Therefore, the synthesis of new tetracyclic acridine compounds has increased rapidly in the last few years.² The potential biological activity of these novel ring systems renders them particularly attractive as candidates for pharmacological evaluation. In this respect, we have recently described the preparation of and NMR spectral data for, e.g., pyrazolo[a],^{3,4} thiazolo[4,5-a],^{5,6} thiazolo[5,4-a],^{5,6} pyrrolo[2,3-b]⁷ and pyrrolo[3,2-a]acridinones.⁷


In this paper, we report the complete ¹H and ¹³C NMR chemical shift assignments obtained from one- and two-dimensional NMR techniques for the following new classes of fused acridinones: 2,3-dihydro-1-cyclopent[b]acridin-10(5H)-one (1b-5b), 2,3-dihydro-1-cyclopent[a]acridin-11(6H)-one (1c-5c), 1,3-dioxolo[2,3-b]acridin-10(5H)-one (6b), 2,3-dihydro-1,4-dioxino[2,3-b]acridin-10(6H)-one (7b-9b), 2,3-dihydro-1,4-dioxino[2,3-a]acridin-12(7H)-one (7c-9c), 1,3-dihydroimidazo[4,5-b]acridin-2,10(5H)-dione (10b, 11b) and 1,3-dihydroimidazo[4,5-a]acridin-2,11(5H)-dione (10c, 11c) (Fig. 1).

EXPERIMENTAL

The compounds were prepared and purified as described previously. All spectra were recorded on a Bruker AMX 400 spectrometer in DMSO- d_6 solutions. The $^1\mathrm{H}$ and $^{13}\mathrm{C}$ chemical shifts of the solvent were used as a secondary reference and referred to the TMS signal from the usual relationships. 9

The ¹H-detected one-bond HMQC¹⁰ spectra were obtained using a pulse sequence (INVBTP in the operating Bruker software) which includes the BIRD pulse¹¹ to invert the magnetization of the protons not coupled to ¹³C. These spectra were collected with 2K \times 256 data points, a data acquisition of 32 scans \times 256 increments in the t_1 domain. Spectral widths of 3000 and 8000 Hz were employed in the F_2 (¹H) and F_1 (¹³C) domains, respectively. Data were processed

	Χ	Υ	Z	R ¹	R²
1	CH ₂	CH ₂	CH ₂	Н	н
2	CH₂	CH₂	CH₂	6-NO ₂	Н
3	CH ₂	CH ₂	CH ₂	7-NO ₂	Н
4	CH₂	CH ₂	CH₂	8-NO ₂	Н
5	CH₂	CH ₂	CH₂	8-0CH ₃	Н
6	0	CH ₂	0	Н	Н
7	0	2 2' X-CH ₂ -CH ₂ -Z	0	Н	Н
8	0	2 2' X-CH ₂ -CH ₂ -Z	0	н	CH ₃
9	0	2 2' X-CH ₂ -CH ₂ -Z	0	н	12 13 14 CH ₂ -CH ₂ -N(CH ₃) ₂
10	NH	CO	NH	Н	Н
11	NCH ₃	CO	NCH ₃	Н	CH ₃

Figure 1. Structures of the compounds studied (the numbering of the carbons is arbitrary).

using sine-bell functions for weighting in both dimensions; the delay Δ_1 was set to 3.0 ms and Δ_2 was empirically optimized as 400 ms.

The long-range HMBC spectra¹² were obtained using the standard pulse sequence (the INV4LPRND microprogram in the Bruker software). The spectral widths were 3 kHz (F_2) and 10 kHz (F_1) , and the delays Δ_1 and Δ_2 were set to 3.0 and 60 ms, respectively.

RESULTS AND DISCUSSION

The results are given in Tables 1–7. The structural determination of the fused tetracyclic acridinones $\bf b$ and $\bf c$ follows from the multiplet pattern analysis of C-ring protons; thus, H-3a (or H-11) and H-4 would be expected to resonate as two singlets in the case of linear isomer $\bf b$ and two doublets in the case of bent isomer $\bf c$. Such an approach has been already used for the structural elucidation of pyrazolo[a]-9(10H)-acridinones⁴ and pyrazolo[b]- and pyrazolo[c]phenothiazines.¹³

^{*} Correspondence to: J. P. Galy.

Table 1.	¹ H chen	nical shif	ts of N-a	ryl compo	ounds 1a-	-7a and 1	10aª	
Atom	1a	2a	3a	4a	5a ^b	6a	7a	10a
H-1	2.83	2.76	2.85	2.84	2.79	_	_	10.58
H-2/2'	2.00	1.97	2.07	2.02	1.99	6.01	4.22/4.22	_
H-3	2.83	2.76	2.85	2.84	2.79	_	<u>.</u>	10.58
H-4	7.08	6.78	7.14	7.14	7.04	6.86	6.72	6.80
H-10a	6.95	6.66	7.06	7.04	6.91	6.69	6.72	6.79
H-11	7.17	7.06	7.26	7.26	7.15	6.89	6.84	6.90
H-5	9.59	9.90	9.80	10.29	9.11	9.40	_	10.58
H-6	7.10	_	7.70	6.99	7.15	6.96	6.99	6.96
H-7	7.32	8.17	_	8.09	7.06	7.33	7.32	7.29
H-8	6.69	7.02	7.43	_	_	6.69	6.67	6.66
H-9	7.87	8.03	8.07	8.66	7.37	7.85	7.85	7.84

 $^{^{\}rm a}$ In ppm from TMS; DMSO- $d_{\rm 6}$ as solvent. $^{\rm b}$ $\delta{\rm OCH_3}$ = 3.70 ppm.

Table 2.	¹³ C chemi	cal shifts of	N-aryl com	pounds 1a-	-7a and 10 ^a			
Atom	1a	2a	3a	4a	5a°	6a	7a	10a
C-1	31.74	31.68	31.85	32.03	31.77	_	_	_
C-2/2'	25.19	25.08	25.18	25.34	25.32	101.24	63.96/64.18	155.45
C-3	32.74	32.36	32.40	32.50	32.51	_	<u>.</u>	_
C-3a	145.10	144.79	145.57	145.66	145.09	148.54	143.75	130.51
C-4	118.35	116.40	119.48	120.48	118.94	105.28	111.94	104.39
C-4a	138.93	139.30 ^b	140.62	141.78	139.75	134.38	133.71	133.55
C-10a	120.36	118.00	121.32	122.43	121.88	116.39	116.34	116.13
C-11	124.83	124.57	125.15	125.33	124.85	108.61	117.59	108.98
C-11a	138.44	138.87	137.08	136.21	137.84	143.93	140.10	126.54
C-5a	147.99	139.59 ^b	148.72	153.02	141.87	147.98	148.33	148.79
C-6	113.32	139.42 ^b	107.18	113.07	114.46	113.17	113.14	112.96
C-7	134.01	130.93	150.79	129.29	116.84	134.19	134.12	133.76
C-8	116.62	114.61	109.91	136.21	150.62	116.56	116.51	116.21
C-9	131.84	136.68	133.54	128.61	116.16	131.80	131.80	131.69
C-9a	112.02	119.52	116.80	110.53	113.17	111.56	111.70	111.97
C-10	169.85	168.75	168.64	168.86	169.66	170.00	170.06	170.07

^a In ppm from TMS; DMSO- d_6 as solvent. ^b Assignments may be reversed. ^c δ OCH $_3$ = 55.38 ppm.

Table 3.	¹ H chem	nical shifts	of tetrac	yclic deriv	atives of	acridinone	(linear	isomer b) ^a
Atom	16	2hb	5h°	6h	7h	Ohb.d	Qh ^e	10h

Atom	1b	2b⁵	5b°	6b	7b	8b ^{b,d}	9b°	10b	11b ^{b,g}
H-1	2.95	2.99	2.96	_	_	_	_	11.01 ^f	_
H-2	2.05	2.12	2.05	6.13	4.30	4.28	4.33	_	_
H-2'	_	_	_	_	4.37	4.36	4.41	_	_
H-3	2.95	2.99	2.96	_	_	_	_	10.79 ^f	_
H-4	7.46	7.30	7.33	6.95	6.93	6.90	7.16	7.02	6.78
H-5	12.13	11.20	11.56	11.71	11.46	_	_	11.97	_
H-6	7.58	_	7.48	7.47	7.44	7.40	7.66	7.53	7.42
H-7	7.66	8.68	7.34	7.65	7.65	7.63	7.76	7.64	7.65
H-8	7.18	7.29	_	7.21	7.18	7.20	7.26	7.16	7.24
H-9	8.18	8.86	7.60	8.17	8.17	8.48	8.27	8.18	8.51
H-11	8.02	8.24	8.03	8.50	7.59	7.97	7.69	7.64	7.98

 $^{^{\}rm a}$ In ppm from TMS; DMSO- $d_{\rm 6}$ as solvent.

Table 4.	¹³ C chemi	cal shifts of	f tetracyclic	derivative	s of acridin	one (linear i	somer b) ^a		
Atom	1b	2b ^b	5b°	6b	7b	8b ^{b,d}	9b ^f	10b	11b ^{b,g}
C-1	31.41	32.15	31.42	_	_	_	_	_	_
C-2	25.36	25.80	25.46	101.95	63.91	63.99	63.86	155.81	155.19
C-2'		_			64.95	65.06	64.90	_	_
C-3	32.61	33.46	32.63			_		_	_
C-3a	150.74	153.36	150.56	152.57	149.46	149.50	149.65	136.06	136.20
C-4	112.10	113.10	111.93	95.71	102.95	102.00	102.59	94.58	92.26
C-4a	140.77	141.22	141.22	138.43	136.87	138.69	137.54	137.37	139.82
C-5a	140.21	134.22	139.76	140.19	140.91	142.38	141.47	140.40	142.13
C-6	117.16	135.83	118.92	117.01	117.05	114.33°	115.43	116.78	114.59
C-7	132.73	131.38	123.80	132.48	132.91	133.13	133.64	132.23	133.28
C-8	120.40	119.45	153.62	120.91	120.53	120.65	120.76	120.03	121.12
C-9	125.83	136.68	104.88	125.70	125.98	127.60	126.55	125.68	127.71
C-9a	120.17	124.17	120.68	119.91	119.58	121.69	120.76	119.37	121.81
C-10	176.40	176.86	175.76	174.97	176.18	176.73	175.01	175.71	177.25
C-10a	119.41	120.79	120.68	115.33	115.61	117.56	116.53	115.35	117.73
C-11	120.27	121.96	120.22	102.02	111.78	114.27°	112.55	102.76	104.45
C-11a	137.43	138.78	137.36	143.68	139.81	139.56	139.60	126.58	126.44

 $^{^{\}rm a}$ In ppm from TMS; DMSO- $d_{\rm 6}$ as solvent.

a In ppm from TMS; DMSO- d_6 as solvent. b CDCl $_3$ as solvent. c δ OCH $_3$ = 3.83 ppm. d δ NCH $_3$ = 3.74 ppm. e δ H-12 = 4.45 ppm; δ H-13 = 2.61 ppm; δ H-14 = 2.27 ppm. These assignments may be reversed (broad signals). e δ N $_1$ CH $_3$ = δ N $_3$ CH $_3$ = 3.44 ppm; δ N $_5$ CH $_3$ = 3.83 ppm.

^b CDCl₃ as solvent. ^c δ OCH₃ = 55.29 ppm. ^d δ NH₃ = 33.66 ppm.

^e Assignments may be reversed.

 $^{^{4}}$ δC-12 = 55.65 ppm; δC-13 = 44.31 ppm; δC-14 = 45.70 ppm. 4 δN₁CH₃ = δN₃CH₃ = 27.58 ppm; δN₆CH₃ = 34.39 ppm.

Table 5.	¹ H chem	nical shifts	of tetracy	clic deriva	tives of ac	ridinone (b	ent isom	er c) ^a		
Atom	1c	2c ^b	3c	4c	5c°	7c	8c ^{b,d}	9c°	10c	11c ^{b,g}
H-1	2.87	2.96	2.86	2.88	2.86	_		_	10.72 ^f	_
H-2	2.07	2.18	2.08	2.08	2.07	4.33	4.48	4.45	_	_
H-2'	_	_	_	_	_	4.26	4.32	4.31	_	_
H-3	3.53	3.62	3.50	3.48	3.55	_	_	_	10.85 ^f	_
H-3a	7.55	7.56	7.61	7.60	7.52	7.25	7.25	7.34	7.40	7.29
H-4	7.31	7.21	7.31	7.32	7.29	7.11	6.96	7.17	7.13	7.17
H-5	11.51	11.16	11.95	12.09	11.50	11.99	_	_	11.67	_
H-6	7.45	_	8.29	7.54	7.45	7.53	7.40	7.66	7.50	7.43
H-7	7.65	8.65	_	8.35	7.34	7.61	7.64	7.75	7.69	7.67
H-8	7.17	7.25	7.85			7.14	7.22	7.23	7.21	7.24
H-9	8.14	8.77	8.32	8.85	7.58	8.11	8.48	8.19	8.19	8.40

 $^{^{\}rm a}$ In ppm from TMS; DMSO- $d_{\rm 6}$ as solvent.

Table 6.	¹³ C chemi	ical shifts of	f tetracyclic	c derivative	s of acridin	one (bent is	omer c) ^a			
Atom	1c	2c ^b	3c	4c	5c°	7c	8c ^{b,d}	9c°	10c	11c ^{b,f}
C-1	31.37	32.10	31.22	31.40	31.46	_	_	_	_	_
C-2	24.73	25.32	24.78	24.69	24.73	64.37	64.95	64.35	155.03	156.26
C-2'						63.40	63.69	63.37		_
C-3	34.37	34.76	34.53	34.23	34.48	_	_	_	_	_
C-3a	129.50	130.84	129.89	130.48	129.21	123.90	123.30	123.64	115.62	113.01
C-4	115.45	116.17	115.90	116.17	115.53	109.11	106.72	107.26	108.14	107.13
C-4a	140.62	140.67	140.62	140.09	140.32	137.71	139.40	138.01	136.26	139.74
C-5a	140.62	134.05	139.21	144.54	135.48	140.12	141.82	140.82	140.88	142.21
C-6	116.90	135.96	111.76	118.42	116.72	116.76	114.07	115.17	117.22	114.54
C-7	132.95	131.34	151.32	127.05	123.76	132.74	133.12	133.57	133.21	133.51
C-8	120.41	119.32	115.28	140.26	153.64	120.46	120.85	120.81	120.39	120.92
C-9	125.96	136.53	126.11	123.16	105.02	125.99	127.79	126.65	125.46	127.36
C-9a	121.28	125.05	120.19	119.78	121.78	121.16	123.64	122.68	119.80	123.31
C-10	177.98	178.11	177.70	177.47	177.31	176.18	177.81	175.83	177.09	177.50
C-10a	117.77	118.99	117.21	117.95	117.00	111.82	113.88	113.08	106.68	110.23
C-11	144.06	146.66	143.92	144.25	143.76	142.82	144.06	143.57	126.86	129.27
C-11a	136.39	136.53	137.21	138.73	135.98	136.09	137.05	136.71	122.26	125.06

^a In ppm from TMS; DMSO- d_6 as solvent. $^{\rm b}$ CDCl $_{\rm 3}$ as solvent.

⁶ CDCl₃ as solvent.

⁶ δOCH₃ = 3.83 ppm.

⁶ δNCH₃ = 3.60 ppm.

⁶ δH-12 = 4.31 ppm; δH-13 = 2.65 ppm; δH-14 = 2.29 ppm.

^fThese assignments may be reversed (broad signals).

^g $\delta N_1 CH_3 = 3.45 \text{ ppm}$; $\delta N_3 CH_3 = 3.87 \text{ ppm}$; $\delta N_6 CH_3 = 3.84 \text{ ppm}$.

 $^{^{\}circ}$ δOCH₃ = 55.26 ppm. $^{\circ}$ δOCH₃ = 55.26 ppm. $^{\circ}$ δO-12 = 55.69 ppm; δC-13 = 44.75 ppm; δC-14 = 45.58 ppm. $^{\circ}$ δN₁CH₃ = 27.48 ppm; δN₃CH₃ = 35.19 ppm; δN₆CH₃ = 34.75 ppm.

Table 7. Long-range proton-carbon couplings found in the HMBC spectra of 2,3-dihydro-1,4-dioxino [2,3-b] acridine-10(6H)-one (7b) and 2,3-dihydro-1,4-dioxino [2,3a] acridin-12(7H)-one (7c)

Carbon	Protons showing HMB 7b	C correlation (³ J couplings) 7c
3a	H-11; H-2′	_
4	H-5	H-5
4a	H-11	H-3a
5a	H-7; H-9	H-7; H-9
6	H-5; H-8	H-5; H-8
7	H-9	H-9
8	H-6	H-6
9	H-7	H-7
9a	H-5; H-6; H-8	H-5; H-6; H-8
10	H-9	H-9
10a	H-4; H-5	H-4; H-5
11	_	H-2'; H-3a
11a	H-2; H-4	H-2; H-4

Although some of the remaining ¹H resonances can be assigned on the basis of the appearance of their multiplet patterns and the magnitude of the splittings, complete ¹H assignment cannot be obtained from the one-dimensional spectra. Therefore, assignment of the other ¹H and ¹³C resonances of compounds a-c was deduced from the concerted application of both direct and long-range heteronuclear chemical shift correlation experiments. One-bond proton-carbon chemical shift correlations were established using the HMQC sequence and the (CH)_n groups were unambiguously characterized from the analysis of long-range correlation responses over two and three bonds (²J or ³J couplings) using the HMBC technique. This procedure was exemplified for the 2,3-dihydro-1,4-dioxino[2,3-b]acridin-10(6H)-one 7b and the 2,3-dihydro-1,4-dioxino[2,3-a]acridin-12(7H)-one 7c, for which all the connectivities observed in the HMBC diagram are given in Table 7. For the assignment of the methylene groups CH₂-2 and CH₂-2', the

starting point were the C-4 and C-11 resonances for the linear isomer **b** and the C-3a and C-4 signals for the bent isomer **c**. These carbons, which can be ascribed in a straightforward manner from the HMQC spectra, show correlated peaks to either one of the two methylene protons CH₂-2 and CH₂-2'. The complete ¹H and ¹³C NMR spectral data for tetracyclic heterofused acridinones are presented in tables 3-6 and assignments for *N*-aryl compounds are given in Tables 1 and 2.

References

- (a) S. L. Berg, F. M. Balis, C. L. McCully, K. S. Godwin and D. G. Poplack, *Cancer Res.* 51, 5467 (1991); (b) T. L. Su and K. A. Watanabe, *Stud. Nat. Prod. Chem.* 13, 347 (1993); (c) G. Metha, T. Sambaiah, B. G. Maiya, M. Sirish and D. Chatterjee, *J. Chem. Soc.*, *Perkin Trans.* 1 2667 (1993); (d) T. C. Chou and T. S. Wu, *US Pat.* 5 340 818 (1994); (e) G. C. Y. Chiou, Q. S. Yao, M. S. Chang and T. Okawara, *J. Ocular Pharm.* 10, 335 (1994).
- J. P. Galy, S. Morel, G. Boyer and J. Elguero, J. Heterocycl. Chem. 33, 1551 (1996).
- G. Boyer, J. P. Galy, R. Faure, J. Elguero and J. Barbe, J. Chem. Res. (S) 350; (M) 2601 (1990).
- G. Boyer, J. P. Galy, R. Faure, J. Elguero and J. Barbe, *Magn. Reson. Chem.* 29, 638 (1991).
- J. Barbe, G. Boyer, I. Carignano, J. Elguero, J. P. Galy, S. Morel and R. Oughedani, *Tetrahedron Lett.* 32, 6709 (1991).
- S. Morel, J. P. Galy, J. Elguero and J. Barbe, *Tetrahedron Lett.* 34, 2609 (1993).
- F. Coullet, S. Morel, G. Boyer and J. P. Galy, Synthetic Commun., in press.
- S. Morel, F. Chatel, G. Boyer and J. P. Galy, J. Chem. Research, in press.
- H. Günther, La Spectroscopie de RMN, p. 60. Mason, Paris (1994).
- J. R. Carbow, D. P. Weitekamp and A. Pines, *Chem. Phys. Lett.* 93, 504 (1982).
- 11. A. Bax and S. Subramanian, J. Magn. Reson. 67, 565 (1986)
- A. Bax and M. F. Summers, J. Am. Chem. Soc. 108, 2093 (1986).
- G. Boyer, J. P. Galy, R. Faure and J. Barbe, *Magn. Reson. Chem.* 32, 537 (1994).